Sustainable water deliveries from the Colorado River in a changing climate.

نویسندگان

  • Tim P Barnett
  • David W Pierce
چکیده

The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10-30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed approximately 58% of the time by 2050. If runoff reduces 20%, they will be missed approximately 88% of the time. The mean shortfall when full deliveries cannot be met increases from approximately 0.5-0.7 billion cubic meters per year (bcm/yr) in 2025 to approximately 1.2-1.9 bcm/yr by 2050 out of a request of approximately 17.3 bcm/yr. Such values are small enough to be manageable. The chance of a year with deliveries <14.5 bcm/yr increases to 21% by midcentury if runoff reduces 20%, but such low deliveries could be largely avoided by reducing scheduled deliveries. These results are computed by using estimates of Colorado River flow from the 20th century, which was unusually wet; if the river reverts to its long-term mean, shortfalls increase another 1-1.5 bcm/yr. With either climate-change or long-term mean flows, currently scheduled future water deliveries from the Colorado River are not sustainable. However, the ability of the system to mitigate droughts can be maintained if the various users of the river find a way to reduce average deliveries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Water Sensitive Cities in the Colorado River Basin: A Comparative Historical Analysis to Inform Future Urban Water Sustainability Transitions

Many population centers in the American West rely on water from the Colorado River Basin, which has faced shortages in recent years that are anticipated to be exacerbated by climate change. Shortages to urban water supplies related to climate change will not be limited to cities dependent on the Colorado River. Considering this, addressing sustainable water governance is timely and critical for...

متن کامل

Management of Water Shortage in the Colorado River Basin: Evaluating Current Policy and the Viability of Interstate Water Trading

The water of the Colorado River of the southwestern United States (U.S.) is presently used beyond its reliable supply, and the flow of this river is forecast to decrease significantly due to climate change. A recent interim report of the Colorado River Basin Water Supply and Demand Study is the first acknowledgment of these facts by U.S. federal water managers. In light of this new stance, we e...

متن کامل

Using the IHACRES model to investigate the impacts of changing climate on streamflow in a semi-arid basin in north-central Iran

Understanding the variations of streamflow of rivers is an important prerequisite for designing hydraulic structures as well as managing surface water resources in basins. An overview of the impact of climate change on the streamflow in the Hablehroud River, the main river of a semi-arid basin in north-central Iran, is provided. Using the LARS-WG statistical downscaling model, the outputs of Ha...

متن کامل

Hydrological Implications of Climate Change on River Basin Water Cycle: Case Studies of the Yangtze River and Yellow River Basins, China

Climate change is a global issue that draws widespread attention from the international society. As an important component of the climate system, the water cycle is directly affected by climate change. Thus, it is very important to study the influences of climate change on the basin water cycle with respect to maintenance of healthy rivers, sustainable use of water resources, and sustainable so...

متن کامل

Determination of Climate Changes on Streamflow Process in the West of Lake Urmia With Used to Trend and Stationarity Analysis

One of the most important hydrological time series task is to determine if there is any trend in the data and how to achieve stationarity when there is nonstationarity behavior in data. Detecting trend and stationarity in hydrological time series may help us to understand the possible links between hydrological processes and global climate changes. In this study yearly, monthly and daily stream...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 18  شماره 

صفحات  -

تاریخ انتشار 2009